
Author: Arnab Nandi
Date: 10.12.2022
Topic: Pyhton Concept Revision

To print something in the screen
print("Hello World")
Now come to the point how we can easily use comments in our code
To use comment we need to add '#' before the line
Comment line simply means that the code execution process
will just ignore the line
Developers normally use the comment line to help other developer
to understand his/her code or codeblocks in simple words.

Multiline comments
"""
It
is a
multiline comment
"""
'''
It
is also
a multiline comment
'''
Variables:-
Variables are just like containers which can hold the value of
some datatypes like integer, float, string, boolean etc.

Examples:
'''
Note: '=' is an assignment operator used to store some value
in a variable.
'''
a = 1
b = 2.0
c = True # Remember in python true is capital 'T'
d = "Arnab"
e = ["Arnab", 1, True, ["CSE", "AOT"]]
f = {"Arnab": 81, "Rohan": 82}
g = ("Arnab", "CSE")
Verification of datatypes of the variables
We use type function to check the type of the variable
print(type(a)) # <class 'int'>
print(type(b)) # <class 'float'>
print(type(c)) # <class 'bool'>
print(type(d)) # <class 'str'>
print(type(e)) # <class 'list'>
print(type(f)) # <class 'dict'>
print(type(g)) # <class 'tuple'>

Now come to the point how we can take input from user
to take input from the user we just need to use input() method
input() # It will wait for some input
Now what if we want to prompt something during an input and store
that value into a variable.

name = input("Enter your name: ")
print("You entered", name)

Common Mistakes:

Case 1: (mis-understanding)
a = "1"
b = "2"
print(a+b)
Expected: 3
Reality: 12
"""
Question: Now come to the point why?
Ans: Python just concatenate the two numbers as a string. It will
not recognize them as integer values.
"""
Solution No. 1
a = 1

b = 2
print(a+b) # It will perfectly work but not an efficient way

Solution No. 2
'''
For this solution we need to understand what is type-casting?
Ans: Type-Casting is simply a process by which we can change the
datatype of the variable.
It can be of 2 types
1. Implicit Type-Casting (Done by interpreter itself)
2. Explicit Type-Casting (Done by programmer forcibly)
'''
Implicit typecasting
a = 1
b = 2.2
print(a+b) # Here a will autometically typecasted into float
It is done by the interpreter from it's own

Explicit typecasting (Main answer of Solution 2)
a = "1"
b = "2"
We entered this as string and we want this act as an integer. How?
We explicitly typecast the value of a & b into integer
print("Type-Casted answer: ", int(a)+int(b))

Case 2:

We generally thought that during input if we input numeric values
then it will be as integer type but this concept is wrong
Python by default take user input as a string

Proof
a = input("Enter a number: ")
print(type(a)) # Output <class 'str'>
so if we want to do some mathematical operation directly then it
will not work. So for that we have to typecast what we are entering
a = int(input("Enter a number: "))
print(type(a)) # Output <class 'int'>

Now come to the point String
a = "Arnab" # Single line string
print(a)
b = "Arnab\"s" # Use of escape sequence
print(b)
c = """In Python, a string is a sequence of characters enclosed
in quotes (either single or double quotes). Strings are used to
represent text-based data in a program, and they are one of the
most commonly used data types in Python."""
print(c)
Basic methods of string in python
a = "Arnab"
String is like array of characters. Indexing starts from 0
print(a[0]) # A
print(a[2]) # n
To find out the length of a string
print(len(a)) # 5
check presence of word/character in a string
print('r' in a) # True
a = "I am a cool boy"
print("cool" in a) # True
print("awesome" in a) # False

Same is for not in statement
print("awesome" not in a) # True

String slicing
a = "Arnab"
print(a[:4]) # By default start is from 0 and end is len(string)
print(a[1:4]) # First index is inclusive & second one is exclusive
Negative slicing
print(a[-4:-1])
Interpreter reads this statement like this
print(a[len(a)-4:len(a)-1])
print(a.upper())
Same concept goes for a.lower()

a = " Arnab" # Having lots of white space begining
To remove this we use strip()
print(a) # Having whitespace in output
print(a.strip()) # Well-Formatted output
Replace method
a = "Arnab"
print(a.replace('r', 'k')) # Replaced r with k
Split
a = "Hello,How,Are,You,Arnab?"
print(a.split(",")) # Returns the splitted list

Operators
print(4+2)
print(4-2)
print(4*2)
print(4/2)
print(4.4/2)
print(4.4//2)
print(5 % 2)
print(5**2)
print(True and True)
print(False and True)
print(False or True)
print(False or False)
print(5 >= 2)
print(5 <= 2)
print(5 == 5)
print(5 != 5)

Details on list
fruits = ["Apple", "Guava", "Watermelon", "Orange"]
print(fruits[1]) # Guava
To add something to list
fruits.append("Grapes")
print(fruits)
To insert something at specific position
fruits.insert(1, "Inserted")
print(fruits)
remove list item
fruits.remove("Guava")
print(fruits)
fruits.clear() # Return a shallow copy of the list.
print(fruits)
numbers = [10, 8, 15, 100, 16, 1]
numbers.sort() # To sort the whole list
print(numbers)
Loops in python
List iteration example with the help of for loop
Case 1:
fruits = ["Apple", "Guava", "Watermelon", "Orange"]
for i in range(len(fruits)):
 print(fruits[i])
print("\nAnother approach\n")
Case 2:
for i in fruits:
 print(i)

Now come to the point -> while loop
a = 5
while (a > 0):
 print(a)
 a -= 1

Tuples
"""
In Python, a tuple is a sequence of comma-separated values enclosed
in parentheses. Tuples are similar to lists, but they are immutable,
which means that the values in a tuple cannot be changed once they
are created.
"""
A tuple with three elements
t = (1, 2, 3)
A tuple with a string, an integer, and a float
t = ("hello", 42, 3.14)
An empty tuple t = ()

Access the first element in the tuple
first_elem = t[0]
Access the last element in the tuple
last_elem = t[len(t) - 1]

t1 = (1, 2, 3)
t2 = (4, 5, 6)
Concatenate two tuples to create a new tuple
t3 = t1 + t2
Combine multiple tuples into a single tuple
t4 = t1, t2, t3
print(t4)

Create a tuple from a list
example = [1, 2, 3, 4, 5]
print(type(example))
tuple_example = tuple(example)
print(type(tuple_example))

Do the opposite process for converting into list from tuple
Important Note:
To update a tuple we need to convert it into list then update
the list then again make it tuple

Set in python
set_example = {1, 2, 3, 1, 1} # Duplicates are not allowed
print("Set: ", set_example)
set_example.add(6)
print("After addition: ", set_example)

set1 = {10.15, 41, 51}
list1 = ["Arnab", 51, 103.2, True]
We can combine sets or lists by this
set_example.update(set1)
print(set_example)
set_example.update(list1)
print(set_example)

Dictionaries in Python
thisdict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
Access specific value for the key
print(thisdict["brand"])
print(thisdict.keys())
Update the dictionary
thisdict.update({"year": 2022})
Add key-value pair in the dictionary
thisdict["color"] = "White"
print(thisdict)
Remove something from dictionary
thisdict.pop("color")
print(thisdict)

If-Else Statement
a = 4
if (a < 3):
 print("True")
elif (a == 4):
 print("Exactly 4")
else:
 print("False")

Function calling in python

def my_function(choice):
 if (choice == 'Yes'):
 print("I am in the function")
 else:
 print("Plese call me")

Function calling demo
choice = input("Call that function? 'Yes' or 'No': ")
my_function(choice)

